

Детский технопарк «Кванториум» на базе муниципального бюджетного общеобразовательного учреждения «Школа № 60/61 имени Героя Российской Федерации Д.О. Миронова»

Принята на заседании методического совета Протокол N_{2} от «29» мая 2023 года

УТВЕРЖДАЮ Директор МБОУ «Школа № 60/61» _____/*М.А. Перепелкина*/

> Приказ № <u>293</u> от «<u>08</u>» <u>июня</u> 20<u>23</u> года

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Юный нейромоделист

Юныи неиромооелист			
Направленность	Техническая		
Уровень программы Базовый			
Возраст обучающихся	13-17 лет (8 - 11 класс)		
Срок реализации	1 год		
Общее количество часов	68 часов		
Количество часов в неделю	2 часа		
Педагог дополнительного образования	Антипова Ольга Вячеславовна		

Пояснительная записка

Курс «Юный нейромоделист» посвящен начальному знакомству с нейротехнологиями. В общем случае нейротехнологии — это любые технологии, которые оказывают фундаментальное влияние на то, как люди понимают мозг и различные аспекты сознания, мыслительной деятельности, высших психических функций.

В представленном курсе учащиеся будут учиться создавать электронные устройства, управляемые биологическими сигналами передаваемые телом человека. В ходе изучения предлагаемого курса представится возможность познакомиться именно с этим разделом нейротехнологий. Таким образом, учащиеся смогут получить знания и навыки по двум направлениям: электронике (инженерной составляющей курса) и электрофизиологии (медицинской составляющей курса).

Актуальность Программы обусловлена развитием современных биологических, медицинских и инженерных технологий в области нейробиологии, нейрохирургии и нейроуправления, что требует воспитания технически грамотных людей.

Новизна Программы заключается в знакомстве обучающихся с современными технологиями, приемами и способами работы с современным нейротехнологическим оборудованием, позволяющим исследовать и моделировать различные объекты и системы.

Отличительной особенностью Программы является то, что она позволяет обучающимся познакомиться с основами нейротехнологий не только через теоретическое изучение, но, прежде всего, через практическую работу с приборами, улавливающими биосигналы человеческого тела и способными обрабатывать и трансформировать полученные данные в информацию для дальнейшего использования. В Программе используется наборконструктор «Юный нейромоделист» BiTronics Lab, позволяющий считывать и визуализировать биосигналы человека посредством электромиограммы, электроэнцефалограммы, кожногальванической реакции пульса, благодаря этому у обучающихся есть возможность заниматься проектной работой в области медицины и инженерии.

Основой для разработки Программы послужил учебно-методическое пособие к набору конструктору «Юный нейромоделист» BiTronics Lab OOO «Битроникс».

Программа построена на оптимальном сочетании лекционного и практического материалов, направленном на максимизацию проектно-изыскательской работы обучающегося, в результате которой он может получить общественно значимые результаты и развивать собственные социально активные навыки. Обучающийся после окончания курса, имея основу из полученных знаний, сможет самостоятельно заниматься совершенствованием собственных навыков в области сбора, обработки и визуализации пространственной информации, что позволит ему продолжать исследовать окружающую среду и заниматься проектной деятельностью.

Цели программы

 создание условий для развития инженернотехнических способностей обучающихся через изучение нейротехнологий, программирования, электроники.

Задачи программы:

Обучающие:

- ознакомить с историей развития отечественной и мировой техники, ее создателях, о различных направлениях изучения нейротехнологий, программирования;
 - формировать целостную научную картину мира;
 - обучать эффективной работе с технической литературой, интернетисточниками;
 - ознакомить с основными принципами работы нейрокомпьютерных интерфейсов;
 - формировать представления об основах электроники;

обучать основам программирования.

Развивающие:

- развивать инженерное мышление, изобретательность, образное и пространственное восприятие;
- развивать мыслительные, творческие, коммуникативные способности обучающихся;
 - развивать интерес к техническим знаниям;
- развивать интеллектуальные и практические умения, самостоятельно приобретать и применять на практике полученные знания;
- развивать умение осознанно ставить перед собой конкретную задачу и добиваться её выполнения.

Воспитательные:

- воспитывать устойчивый интерес к нейротехнологиям;
- воспитывать информационную культуру как составляющую общей культуры современного человека;
- формировать потребность в творческой деятельности, стремление к самовыражению через техническое творчество;
- формировать новаторское отношение ко всем сферам жизнедеятельности человека.

Категория обучающихся

Обучение по Программе ведется в разновозрастных группах, которые комплектуются из обучающихся 14-17 лет (8-11 класс). Рекомендуемое количество обучающихся в группе — 5 человек.

Сроки реализации

Программа рассчитана на один год. Общее количество часов – 68. Программа реализуется в течение года по 2 часа (40 минут) в неделю, между занятиями 10 минутный перерыв.

Формы и режим занятий

Форма обучения – очная, программа курса – междисциплинарная, затрагивает знания по физиологии, электронике, программированию и физике.

Форма организации занятий – групповая. Обучающиеся работают в паре.

Промежуточная аттестация проводится в виде тестирования по темам курса, принимаются отчёты по практическим работам, самостоятельные творческие работы, итоговые учебно-исследовательские проекты.

Итоговое занятие проходит в виде научно-практической конференции или круглого стола, где заслушиваются доклады учащихся по выбранной теме исследования или проекта, которые могут быть представлены в форме реферата или отчёта по проектно-исследовательской работе.

Образовательная Программа предполагает возможность организации и проведения с обучающимися культурно-массовых мероприятий, в том числе конкурсы, марафоны, конференции и т.д., а также их участием в конкурсных мероприятиях, как форма аттестации по курсу.

Формы контроля и оценочные материалы

Формы контроля и оценочные материалы служат для определения результативности освоения Программы обучающимися. Текущий контроль проводится по окончании изучения каждой темы — выполнение обучающимися практических заданий. Промежуточный контроль проходит в середине учебного года в форме открытого занятия. Итоговый контроль

(зачетное занятие) проходит в конце учебного года – в форме соревнования. Формы проведения аттестации:

- практическое задание;
- самостоятельная работа;
- тест;
- соревнование, турнир

Планируемые результаты освоения Программы

По итогам обучающиеся будут знать:

- технику безопасности и требования, предъявляемые к организации рабочего места;
 - терминологию нейромоделирования;
 - оборудование и инструменты, используемые в области нейротехнологий;
 - основные сферы применения нейротехнологий;
 - основные направления развития нейротехнологий;
 - основы нейробиологии и нейрофармтехнологии;
 - основные принципы работы нейрокомпьютерных интерфейсов;
 - основные принципы работы электронных схем и систем управления объектами;
- основы электроники и программирования микроконтроллеров для решения задач из области нейротехнологий;
- основы прикладной математики и программирования человекомашинных интерфейсов;
- основы робототехники и управления роботами с помощью нейроинтерфейсов и датчиков биосигналов;
 будут уметь:
- пользоваться инструментами и оборудованием, используемыми в области нейромоделирования;
 - грамотно использовать технические термины;
 - составлять простые программы для решения задач из области нейротехнологий;
 - читать технические рисунки, эскизы, чертежи, схемы;
- конструировать простейшие электронные схемы, использующие интерфейс «мозг-компьютер»;
- разрабатывать простейшие системы с использованием электронных компонентов и нейрокомпьютерных интерфейсов;
 - программировать человеко-машинные интерфейсы;
 - управлять роботами с помощью нейроинтерфейсов и датчиков биосигналов.

Учебный план

№ п/п	Наименование блока	Количество часов			Формы атте-
		Теория	Практика	Всего	стации
1	Знакомство с основами нейротехнологий и человеко-машинного взаимодействия	7	10	17	Тест
2	Электроника	8	17	25	Проект

3	Выполнение проектно- исследовательских ра- бот	-	20	20	Проект
4	Проведение и участие в турнирах, соревнованиях	-	4	4	Соревнование, турнир
5	Итоговое занятие	1	1	2	
	итого	16	52	68	

Содержание учебного плана программы

Знакомство с основами нейротехнологий и человеко-машинного взаимодействия (17 часов)

Знакомство с конструктором «Юный нейромоделист» BiTronics Lab. Использование контроллера Arduino, снабженного модулем гальваничекой развязки. Возможность регистрации 5 биосигналов человека: сигнал с мышцы (ЭМГ), сигнал с сердца (ЭКГ), электрическая активность мозга (ЭЭГ), пульс (ФПГ), кожно-гальваническая реакция (КГР). Аналоговый сигнал и переменные. Передача данных на компьютер. Строение клеточной мембраны и потенциал действия. Понятие о физиологии человека. Строение клетки. Мембранный потенциал, ПД, передача возбуждения по нейрону. Считывание электрической активности головного мозга (ЭЭГ). Строение НС и анализ ЭЭГ. Строение головного мозга. Ритмы.

Электроника (25 часов)

Интерфейсы программирования. Цифровые и аналоговые контакты ввода-вывода. Источники питания. Платы Arduino. Основы схемотехники. Основные законы электричества. Управление электричеством. Сборка схем на плате Arduino. Резистор (его маркировка, виды: термистор, фоторезистор, потенциометр). Расчет делителя напряжения. Диод (выпрямительный, диод Шоттки, стабилитрон...). Светодиод. Схема включения. Светодиодные сборки: индикаторы. Тактовая кнопка. Биполярный и полевой транзисторы. ШИМ. Конденсатор. Пьезодинамик. Мотор. Сервопривод. Микросхема, сдвиговый регистр, триггер Шмитта.

Примерные проекты при изучении электроники:

- Проект Маячок и Маячок с нарастающей яркостью
- Проект «Светильник с управляемой яркостью»
- Проект Терменвокс и ночник
- Проект «Пульсар»
- Проект «Бегущий огонек»
- Проект «Мерзкое пианино»
- Проект «Миксер»
- Проект «Кнопочный переключатель»
- Проект «Светильник с кнопочным управлением»
- Проект «Ковбои с кнопочным управлением»
- Проект «Секундомер»
- Проект «Счетчик нажатий»
- Проект «Комнатный термометр», «Метео станция»
- Проект «Пантограф»
- Проект «Тестер батареек»

- Проект «Светильник, управляемый по USB»
- Проект «Перетягивание каната»

Выполнение проектно-исследовательских работ (20 часов)

Проведение и участие в турнирах (8 часов)

Итоговое занятие (2 часа)

Календарный учебный график

№ п/п	Кол-во часов	Тема занятия	Форма за- нятия	Форма контроля			
Ţ	Знакомство с основами нейротехнологий и человеко-машинного взаимодействия (20 часов)						
1.	0,5	Инструктаж по технике безопасности и правила поведения в технопарке.	Теория	Опрос			
	0,5	Основы нейротехнологий. Современные нейронауки. Значение нейронаук в медицине и научных исследованиях	Теория	Опрос, беседа			
2.	1	Знакомство с конструктором «Юный нейромоделист» BiTronics Lab. Использование контроллера Arduino, снабженного модулем гальваничекой развязки.	Практика	Опрос			
3.	1	Электромиография в современной нейротехнологии	Теория	Опрос, беседа			
4.	1	Опорно-двигательный аппарат и мышечный каркас человека. Строение и функции мускулатуры	Практика	Результаты исследования			
5.	1	Метод электромиографии в исследовании опорнодвигательного аппарата и работы мышц. Расшифровка электромиограммы	Практика	Результаты исследования			
6.	1	Электроэнцефалография в современной нейротехнологии	Теория	Опрос, беседа			
7.	1	Головной мозг. Отделы мозга человека. Функции коры головного мозга и глубинные мозговые структуры. Зрение	Практика	Результаты исследования			
8.	1	Метод электроэнцефалографии в исследовании работы головного мозга и центральной нервной системы. Расшифровка электроэнцефалограммы	Практика	Результаты исследования			
9.	1	Фотоплетизмография в современной нейротехнологии	Теория	Опрос, беседа			
10.	1	Периферическая гемодинамика (пульс)	Практика	Результаты исследования			
11.	1	Метод фотоплетизмографии в исследовании периферической гемодинамики и работы сердечных циклов. Расшифровка фотоплетизмограммы	Практика	Результаты исследования			
12.	1	Электрокардиография в современной нейротехнологии	Теория	Опрос, беседа			
13.	1	Анатомическое строение сердца. Физиология сердечной деятельности	Практика	Результаты исследования			

14.	1	Метод электрокардиографии в исследовании работы сердца и пульсации сердечной мышцы. Расшифровка электрокардиограммы	Практика	Результаты исследования
15.	1	Диагностика электрической активности кожи в современной нейротехнологии	Теория	Опрос, беседа
16.	1	Активность вегетативной нервной системы, широко применяемая в психофизио- логии. Строение и функции кожи	Практика	Результаты исследования
17.	1	Метод диагностики кожно -гальванической реакции (КГР) в исследовании активности вегетативной нервной системы. Расшифровка диаграммы кожно - гальванической реакции	Практика	Результаты исследования
,	Электроні	ика и нейротехнологии (25 часов)		
18.	0,5	Интерфейсы программирования. Цифровые и аналоговые контакты вводавывода. Источники питания. Платы Arduino	Теория	Опрос, беседа
19.	0,5	Основы схемотехники	Теория	Опрос, беседа
20.	0,5	Основные законы электричества	Теория	Опрос, беседа
21.	0,5	Управление электричеством	Теория	Опрос, беседа
22.	0,5	Сборка схем на плате Arduino	Теория	Опрос, беседа
23.	0,5	Резистор (его маркировка, виды: термистор, фоторезистор, потенциометр). Расчет делителя напряжения	Теория	Опрос, беседа
24.	0,5	Диод (выпрямительный, диод Шоттки, стабилитрон)	Теория	Опрос, беседа
25.	0,5	Светодиод. Схема включения. Светодиодные сборки: индикаторы.	Теория	Опрос, беседа
26.	1	Проект Маячок и Маячок с нарастающей яркостью	Практика	Результаты тестирования проекта
27.	0,5	Тактовая кнопка	Теория	Опрос, беседа

28.	0,5	Биполярный и полевой транзисторы	Теория	Опрос, беседа
29.	0,5	ШИМ.	Теория	Опрос, беседа
30.	1	Проект «Светильник с управляемой яркостью»	Практика	Результаты тестирования проекта
31.	0,5	Конденсатор	Теория	Опрос, беседа
32.	0,5	Пьезодинамик	Теория	Опрос, беседа
33.	1	Проект Терменвокс и ночник	Практика	Результаты тестирования проекта
34.	1	Проект «Пульсар»	Практика	Результаты тестирования проекта
35.	1	Проект «Бегущий огонек»	Практика	Результаты тестирования проекта
36.	1	Проект «Мерзкое пианино»	Практика	Результаты тестирования проекта
37.	0,5	Мотор	Теория	Опрос, беседа
38.	1	Проект «Миксер»	Практика	Результаты тестирования проекта
39.	1	Проект «Кнопочный переключатель»	Практика	Результаты тестирования проекта
40.	1	Проект «Светильник с кнопочным управлением»	Практика	Результаты тестирования проекта
41.	1	Проект «Ковбои с кнопочным управлением»	Практика	Результаты тестирования проекта
42.	0,5	Сервопривод	Теория	Опрос, беседа
43.	0,5	Микросхема, сдвиговый регистр, триггер Шмитта	Теория	Опрос, беседа

44.	1	Проект «Секундомер»	Практика	Результаты тестирования проекта		
45.	1	Проект «Счетчик нажатий»	Практика	Результаты тестирования проекта		
46.	1	Проект «Комнатный термометр», «Метео станция»	Практика	Результаты тестирования проекта		
47.	1	Проект «Пантограф»	Практика	Результаты тестирования проекта		
48.	1	Проект «Тестер батареек»	Практика	Результаты тестирования проекта		
49.	1	Проект «Светильник, управляемый по USB»	Практика	Результаты тестирования проекта		
50.	1	Проект «Перетягивание каната»	Практика	Результаты тестирования проекта		
Выпо	Выполнение проектно-исследовательских работ (20 часов)					
51.	2	Выбор темы проектно-исследовательской работы. Составление плана работы	Практика	План работы		
52.	18	Индивидуальная работа над проектно-исследовательской работы	Практика	Результат работы		
Итого	Итоговое занятие (4 часа)					
53.	2	Защита проектно-исследовательской работы	Практика	Проекта		
54.	4	Проведение и участие в турнирах	-	Результаты участия		
55.	2	Круглый стол «Современные направления нейротехнологий» Итоговое занятие	Теория	Вручение сертификатов «Юный нейромоделист»		

Ресурсное обеспечение Программы

Материально-техническое обеспечение:

- ноутбуки с установленным необходимым программным обеспечением;
- интерактивная панель;
- цифровая (компьютерная лаборатория), включающая программно-аппаратный комплекс и набор датчиков;
 - Конструкторы «Юный нейромоделист» BiTronics Lab.

Учебно-методическое обеспечение:

- Тематическое планирование курса OOO «Битроникс»;
- Методические указания по проведению занятий;
- Дополнительные материалы видео, раздаточные материалы, материалы для мини-групп и т. д.
- Бейктал Дж. Конструируем роботов на Arduino. Первые шаги. Москва: Лаборатория знаний, 2016; 20
- Бейктал Дж. Конструируем роботов от A до Я. Полное руководство для начинающих. Москва: Лаборатория знаний, 2016;
- Григорьев А., Винницкий Ю. Игровая робототехника для юных программистов и конструкторов: МВОТ и МВLОСК. Санкт-Петербург: БХВПетербург, 2019;
- Крейг Дж. Введение в робототехнику. Механика и управление. Москва: ИКИ, 2013;
- Момот М. Мобильные роботы на базе Arduino. Санкт-Петербург: БХВ-Петербург, 2018;
- Петин В.А., Биняковский А.А. Практическая энциклопедия Arduino. Санкт-Петербург: ДМК Пресс, 2020;
- Робототехники и мехатроники. Новые механизмы в современной робототехнике. /Под ред. В.А. Глазунова. Москва: Техносфера, 2018;
- Салахова А. Конструируем роботов на Arduino. Умный свет. Москва: Лаборатория знаний, 2017;
- Салахова А. Конструируем роботов на Arduino. Да будет свет. Москва: Лаборатория знаний, 2017;
- Соммер У. Программирование микроконтроллерных плат Arduino/Freeduino. Санкт-Петербург: БХВ-Петербург, 2012;
- Флах П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. /Пер. с англ. А. А. Слинкина. Санкт-Петербург: ДМК Пресс, 2015;
- Яшин А.В., Русин Г.С., Дубовик Е.В., Иркова Ю.А. Программируем своего первого робота или Ваш личный робопёс. Санкт-Петербург: Наука и техника СПб, 2018;
- Кирой В.Н. Интерфейс Мозг-Компьютер (история, современное состояние, перспективы): монография. Ростов-на-Дону: Издательство ЮФУ, 2011:
- [Электронный ресурс] //сайт Российская государственная библиотека. URL: https://search.rsl.ru/ru/record/01005434736 (Дата обращения: 09.10.2020); Интернет-ресурсы
- Видеоуроки к набору-конструктору «Юный нейромоделист» BiTronics Lab: [Электронный ресурс] //сайт: Youtube.com. URL: https://www.youtube.com/playlist?list=PLQu4ZlRw9NvtRA3OI9SabAgmoooGle2vL (Дата обращения: 09.10.2020); 21

- Видеоуроки Arduino: [Электронный ресурс] //сайт: AlexGyver Technologies. URL: https://alexgyver.ru/lessons/about-arduino/
- Видеоуроки по конструированию mBot: [Электронный ресурс] //сайт: Яндекс. Видео. URL: https://yandex.ru/video/search?text=%D0%92%D0%B8%D0%B4%D0%B5%D0%B E%D1%83%D1%80%D0%BE%D0%BA%D0%B8%20%D0%BF%D0%BE%20%D 0%BA%D0%BE%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%B8%D1%8 0%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8E%20mBot&path=wizar d&wiz_type=vital&family=yes